NCP1028
L +
+ 3.8 mH
+ 120
0.49 + 258 mA peak * to * peak
D IL +
+ 0.447
40n + 130 mW
Poff +
+ Ipeak + 156m )
Ipeak +
Iavg D IL D IL
) + 447 mA
I1 + Ipeak-
D IL
+ 0.447-0.129 + 318 mA
Pon +
+ 0.447
40n + 22 mW
? Large K: approaching BCM where the rms losses are
the worse, but smaller inductance, leading to a better
leakage inductance.
From Equation 16, a K factor of 0.8 (40% ripple), gives
an inductance of:
(120 0.49)2
60k 0.8 18.75
Vind
LFSW 3.8m 60k
The peak current can be evaluated to be:
d 2 0.49 2
In Figure 43, I 1 can also be calculated:
2
5. Based on the above numbers, we can now
evaluate the conduction losses:
If we take the maximum R DS(on) for a 120 ° C junction
temperature, i.e. 11 W , then conduction losses worse case
are:
Pcond + I2d, rms Rds(on) + 571 mW
6. Off-time and on-time switching losses can be
estimated based on the following calculations:
IpeakVdstoff 650
6TSW 6 15u
(eq. 18)
IpeakN(Vout ) Vf)ton
6TSW (eq. 19)
114
6 15u
The theoretical total power is then 0.571 + 0.13 + 0.022
= 723 mW.
7. The ramp compensation will be calculated as
suggested by Equation 13 giving a resistor of
78 k W or 82 k W for the normalized value.
1 ) 1
2 + 228 mA rms
HV
3 2 0.318
0.258
Id, rms + I1 d 1 ) 1 D IL 2 + 0.318
3 2I1
0.7
HV
Power Switch Circuit Protection
As in any Flyback design, it is important to limit the drain
excursion to a safe value, e.g. below the power switch
circuit BVdss which is 700 V. Figures 44a, b, c present
possible implementations:
HV
R clamp
C clamp
D
Dz
D
1
2
3
8
7
6
1
2
3
8
7
6
1
2
3
8
7
6
CV CC +
4
5
CV CC +
4
5
CV CC +
4
5
C
a.
b.
Figure 44. Different Options to Clamp the Leakage Spike
c.
Figure 44a: The simple capacitor limits the voltage
according to Equation 14. This option is only valid for low
power applications, e.g. below 5.0 W, otherwise chances
Figure 44b: The most standard circuitry called the RCD
network. You calculate R clamp and C clamp using the
following formulae:
exist to destroy the MOSFET. After evaluating the leakage
inductance, you can compute C with Equation 15. Typical
values are between 100 pF and up to 470 pF. Large
Rclamp +
2Vclamp(Vclamp-(Vout ) Vf) N)
LpeakI2peak FSW
(eq. 20)
capacitors increase capacitive losses …
Cclamp +
Vclamp
VrippleFSWRclamp
(eq. 21)
http://onsemi.com
25
相关PDF资料
NCP1216AFORWGEVB BOARD EVAL NCP1216A 35W
NCP1351LEDGEVB EVAL BOARD FOR NCP1351LEDG
NCP3065BBGEVB BOARD EVAL NCP3065 MR16 BOOST
NCP3066SCBCKGEVB EVAL BOARD FOR NCP3066SCBCKG
NCP5005GEVB EVAL BOARD FOR NCP5005G
NCP5006EVB EVAL BOARD FOR NCP5006
NCP5030MTTXGEVB EVAL BOARD FOR NCP5030MTTXG
NCP5602EVB EVAL BOARD FOR NCP5602
相关代理商/技术参数
NCP1028P065G 功能描述:电流型 PWM 控制器 NCP1028 65 KHZ RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14
NCP1028P100G 功能描述:电流型 PWM 控制器 NCP1028 100 KHZ RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14
NCP1028PL065R2G 功能描述:交流/直流开关转换器 ANA 1 FREQ GULLWING RoHS:否 制造商:STMicroelectronics 输出电压:800 V 输入/电源电压(最大值):23.5 V 输入/电源电压(最小值):11.5 V 开关频率:115 kHz 电源电流:1.6 mA 工作温度范围:- 40 C to + 150 C 安装风格:SMD/SMT 封装 / 箱体:SSO-10 封装:Reel
NCP102MBGEVB 功能描述:电源管理IC开发工具 NCP102 4W MOTHERBRD EVB RoHS:否 制造商:Maxim Integrated 产品:Evaluation Kits 类型:Battery Management 工具用于评估:MAX17710GB 输入电压: 输出电压:1.8 V
NCP102SNT1G 功能描述:低压差稳压器 - LDO LDO LINR REG CONTRL RoHS:否 制造商:Texas Instruments 最大输入电压:36 V 输出电压:1.4 V to 20.5 V 回动电压(最大值):307 mV 输出电流:1 A 负载调节:0.3 % 输出端数量: 输出类型:Fixed 最大工作温度:+ 125 C 安装风格:SMD/SMT 封装 / 箱体:VQFN-20
NCP1030 制造商:ONSEMI 制造商全称:ON Semiconductor 功能描述:Low Power PWM Controller with On-Chip Power Switch and Startup Circuits for 48V Telecom Systems
NCP1030_06 制造商:ONSEMI 制造商全称:ON Semiconductor 功能描述:Low Power PWM Controller with On−Chip Power Switch and Startup Circuits for 48V Telecom Systems
NCP10301 制造商:ONSEMI 制造商全称:ON Semiconductor 功能描述:AC-DC Offline Switching Controllers/Regulators